Estimating Directional Data From Network Topology for Improving Tracking Performance

DSpace/Manakin Repository

Estimating Directional Data From Network Topology for Improving Tracking Performance

Show full item record

Title: Estimating Directional Data From Network Topology for Improving Tracking Performance
Author: Tomic, Slavisa; Beko, Marko; Dinis, Rui; Montezuma, Paulo
Abstract: This work proposes a novel approach for tracking a moving target in non-line-of-sight (NLOS) environments based on range estimates extracted from received signal strength (RSS) and time of arrival (TOA) measurements. By exploiting the known architecture of reference points to act as an improper antenna array and the range estimates, angle of arrival (AOA) of the signal emitted by the target is first estimated at each reference point. We then show how to take advantage of these angle estimates to convert the problem into a more convenient, polar space, where a linearization of the measurement models is easily achieved. The derived linear model serves as the main building block on top of which prior knowledge acquired during the movement of the target is incorporated by adapting a Kalman filter (KF). The performance of the proposed approach was assessed through computer simulations, which confirmed its effectiveness in combating the negative effect of NLOS bias and superiority in comparison with its naive counterpart, which does not take prior knowledge into consideration.
Description: Journal of Sensor and Actuator Networks
URI: http://hdl.handle.net/10437/9748
Date: 2019


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show full item record

Search DSpace


Advanced Search

Browse

My Account