Target Tracking with Sensor Navigation Using Coupled RSS and AoA Measurements

DSpace/Manakin Repository

Target Tracking with Sensor Navigation Using Coupled RSS and AoA Measurements

Show full item record

Title: Target Tracking with Sensor Navigation Using Coupled RSS and AoA Measurements
Author: Tomic, Slavisa; Beko, Marko; Dinis, Rui; Gomes, João Pedro
Abstract: This work addresses the problem of tracking a signal-emitting mobile target in wireless sensor networks (WSNs) with navigated mobile sensors. The sensors are properly equipped to acquire received signal strength (RSS) and angle of arrival (AoA) measurements from the received signal, while the target transmit power is assumed not known. We start by showing how to linearize the highly non-linear measurement model. Then, by employing a Bayesian approach, we combine the linearized observation model with prior knowledge extracted from the state transition model. Based on the maximum a posteriori (MAP) principle and the Kalman filtering (KF) framework, we propose new MAP and KF algorithms, respectively. We also propose a simple and efficient mobile sensor navigation procedure, which allows us to further enhance the estimation accuracy of our algorithms with a reduced number of sensors. Model flaws, which result in imperfect knowledge about the path loss exponent (PLE) and the true mobile sensors’ locations, are taken into consideration. We have carried out an extensive simulation study, and our results confirm the superiority of the proposed algorithms, as well as the effectiveness of the proposed navigation routine.
Description: Sensors
URI: http://hdl.handle.net/10437/9737
Date: 2017


Files in this item

Files Size Format View
tomic_sensors-17-02690_published_version.pdf 1.116Mb PDF View/Open

This item appears in the following Collection(s)

Show full item record

Search DSpace


Advanced Search

Browse

My Account